

Fig. 2. Stereoscopic view [*PLUTO* 78 (Motherwell, 1978), modified by Drück, 1982] of the unit cell of HCB in the direction [111].

Fig. 2 shows a stereoscopic view of the packing in the unit cell. The shortest intermolecular contacts are $3 \cdot 148$ (3) Å between a C atom of the ring and an N atom of the neighboring molecule and $3 \cdot 230$ (3) Å between the N and the C atom of a cyano group. With respect to the sum of the van der Waals radii ($3 \cdot 47$ Å; Bondi, 1964) a considerable shortening of the mentioned intermolecular contacts is observed in the crystal structure. The cavity in the center of the unit cell, which can easily accommodate a small molecule, can be clearly observed.

The planarity of the whole molecule in the crystal structure is well defined by the molecular point symmetry $\overline{3}$ together with the calculated angles [90.1 (1), 90.1 (1) and 90.0 (1)°] between the body diagonal [111] and the lines from the molecule center to the atoms C(1), C(11) and N(1).* A remarkable fact is, that each cyano group is pointing almost linearly towards the center of a neighboring molecule, the corresponding distance [N(1)-center] and angle [C(11)-

* The positional deviations for the mentioned atoms from the best least-squares plane calculated including the six ring atoms are 0.002 Å.

N(1)-center] being 3.657 (3) Å and 174.2 (5)° respectively. Considering the high melting point of HCB (643 K accompanied by decomposition), we can postulate an intermolecular charge compensation from the electron-deficient aromatic ring of a neighboring molecule. It could even be possible that, similar to reported results for biphenyl and hexachlorobenzene (Kitaigorodskii, 1965), the ring of benzenehexacarbonitrile is planar only in the crystal,

whereas in the gas phase the strong electron-pulling forces of the six cyano groups cause a more 'cyclohexane-like' conformation of the benzene ring.

The authors wish to thank Dr M. Rössler and Professor Dr G. Becker for the preparation of HCB. Financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

BONDI, A. (1964). J. Phys. Chem. 68, 441-451.

- DRÜCK, U. & GUTH, H. (1982). Z. Kristallogr. In the press.
- DRÜCK, U., GUTH, H., KUTOGLU, A., OHMS, U., SCHERINGER, C. & HEGER, G. (1981). Z. Kristallogr. 154, 267–268.
- FINGER, L. W. & PRINCE, E. (1975). Natl Bur. Stand. US Tech. Note, 854. National Bureau of Standards, Washington, DC.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.

KITAIGORODSKII, A. J. (1965). Acta Cryst. 18, 585-590.

KUTOGLU, A. (1979). A computer program for refinement of charge cloud models (unpublished).

LITTKE, W. (1967). Angew. Chem. 79, 1002-1003.

- LITTKE, W. & WALLENFELS, K. (1965). Tetrahedron Lett. 38, 3365-3366.
- LITTLE, R. G., PAUTLER, D. & COPPENS, P. (1971). Acta Cryst. B27, 1493–1499.
- MOTHERWELL, W. D. S. (1978). PLUTO 78. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1983). C39, 640-643

3,4-Dihydro-2-diphenymethyl-4-diphenylmethylene-6-methyl-3-(p-tolyl)quinazoline, $C_{42}H_{34}N_2$

By W. T. Flowers, A. L. Halls and R. G. Pritchard

Department of Chemistry, UMIST, PO Box 88, Manchester M60 1QD, England

(Received 18 October 1982; accepted 7 February 1983)

Abstract. $M_r = 566.74$, triclinic, $P\overline{1}$, a = 12.998 (6), b = 13.191 (4), c = 21.864 (3) Å, $\alpha = 97.53$ (3), $\beta = 90.74$ (3), $\gamma = 118.44$ (5)°, V = 3255.8 Å³, Z = 4, $D_x = 1.15$ Mg m⁻³, Mo K α , $\lambda = 0.71069$ Å, $\mu = 0.072$ mm⁻¹, T = 293 K, R = 0.093 for 3668 reflexions $[F > 3 \sigma(F)]$. The asymmetric unit consists of two molecules of the title compound related by an approximate non-crystallographic twofold axis. Bulky substituents prevent the quinazoline skeleton achieving planarity.

0108-2701/83/050640-04\$01.50 © 1983 International Union of Crystallography

Introduction. In the course of an investigation into the chemistry of triarylketenimines (Flowers & Halls, 1982), it was found that addition of trifluoromethanesulphonic acid readily caused the dimerization of diphenyl-*N*-tolylketenimine (Flowers & Halls, 1981). The mass, IR and NMR spectra did not lead to unambiguous determination of the structure of the dimer, and allowed, *inter alia*, both the quinazoline (1), analogous to the product of thermal dimerization of dimethyl-*N*-phenylketenimine (Barker & Rosamund, 1974), and the indolenine (2) structures; the ¹H NMR chemical shifts of the aryl and methyl protons indicated considerable steric crowding, and hence the present study was undertaken.

Experimental. Yellow crystal, $0.5 \times 0.4 \times 0.4$ mm, CAD-4 diffractometer, unit-cell dimensions from 25 reflexions, 6175 reflexions measured, $-11 \le h \le 11$, $-13 \le k \le 13, 0 \le l \le 22, \theta < 25^{\circ}, 3668$ unique structure amplitudes with $F > 3 \sigma(F)$, Lorentz and polarization but no absorption correction; MULTAN 78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978) used to solve the phase problem, all non-hydrogen atoms found in Fourier map; asymmetric unit consists of two molecules (A and B) of the title compound (1), related by an approximate noncrystallographic twofold axis perpendicular to the ac plane; parameters of A and B refined separately by blocked full-matrix least squares based on F with SHELX (Sheldrick, 1976), final R = 0.093 [$R_w =$ 0.079, $w = 6.58/\sigma^2(F)$], isotropic thermal parameters. H atoms were constrained to chemically reasonable positions except for the lone H atom attached to the diphenylmethyl group and those attached to the central skeleton which were also refined. The hydrogen temperature factors were tied to those of the bonding atoms, except for those of the phenyl substituents, which were refined together. Fluctuations in the final difference map $\leq \pm 0.5$ e Å⁻³, scattering factors from International Tables for X-ray Crystallography (1974). Computations carried out on the joint CDC 7600/ICL 1906A system of the University of Manchester Regional Computing Centre. The Cambridge Crystallographic Database was surveyed using the Crystal Structure Search and Retrieval (1980) interactive system accessed via the UMIST link to the DEC10 at Edinburgh.

Discussion. Final atomic parameters are given in Table 1.* Fig. 1 is a labelled stereoscopic view of the heavy-atom skeleton of molecule B and Fig. 2 shows the molecular packing.

* Lists of structure factors, constrained H-atom coordinates, intramolecular non-bonded distances and mean-plane calculations and a figure showing torsion angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38360 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Stereoscopic view of non-hydrogen atoms in molecule B with atoms depicted as 50% probability boundary ellipsoids.

Fig. 2. View along b* showing packing of molecule.

C(25) C(26) C(27) C(28)

C(29) C(30)

C(31)

C(32) C(33) C(34) C(35) C(35) C(36) C(37) C(38)

C(39) C(40)

C(41)

C(42)

Table 1. Fractional atomic coordinates and isotropicthermal parameters for independently refined atoms(e.s.d.'s in parentheses)

	x	У	Ζ	U (Ų)
Molecule A				
Molecule A C(1) C(2) N(1) C(3) N(2) C(4) C(5) H(5) C(6) H(6) C(7) C(8) H(8) C(9) C(10) C(11) H(11) C(12) C(13) C(14) C(12) C(13) C(14) C(12) C(13) C(14) C(12) C(13) C(14) C(12) C(22) C(23) C(24) C(22) C(23) C(24) C(25) C(25) C(26) C(27) C(28) C(27) C(31) C(31) C(34) C(3)	x 0.3850 (7) 0.2680 (7) 0.2579 (5) 0.3209 (7) 0.4062 (6) 0.4490 (7) 0.5594 (8) 0.5968 (62) 0.6086 (9) 0.6887 (65) 0.5467 (8) 0.4346 (8) 0.3971 (61) 0.6002 (9) 0.1720 (7) 0.2644 (55) 0.1761 (7) 0.2041 (9) 0.1587 (9) 0.1587 (9) 0.1587 (9) 0.1587 (9) 0.1587 (9) 0.1587 (9) 0.1518 (8) 0.2041 (9) 0.1674 (9) -0.1674 (9) -0.1674 (9) -0.1311 (9) -0.2287 (7) 0.2287 (7) 0.1518 (8) 0.1019 (8) 0.1511 (8) 0.3114 (8) 0.3114 (8) 0.1561 (9) 0.1676 (9) 0.1551	y 0.7695 (7) 0.7292 (7) 0.8240 (6) 0.9359 (7) 0.9675 (6) 0.8873 (8) 0.9319 (9) 1.0112 (66) 0.8593 (9) 0.8908 (62) 0.7416 (8) 0.6166 (65) 0.6619 (9) 0.6235 (7) 1.0201 (8) 1.0111 (55) 0.5142 (8) 0.4332 (9) 0.3481 (10) 0.3701 (10) 0.4734 (9) 0.6063 (7) 0.6703 (8) 0.6594 (9) 0.5140 (9) 0.5244 (8) 0.8081 (7) 0.7893 (8) 0.7892 (8) 0.7892 (8) 0.7892 (8) 0.7893 (7) 0.9983 (9) 0.9953 (8) 0.9953 (7) 0.9953 (9) 0.9953 (9	Z 0.3619 (3) 0.3844 (3) 0.4213 (3) 0.4067 (3) 0.3711 (3) 0.3552 (3) 0.3225 (4) 0.3236 (29) 0.3176 (4) 0.3236 (29) 0.3176 (4) 0.3236 (4) 0.3236 (4) 0.3447 (4) 0.3578 (30) 0.3069 (5) 0.3732 (3) 0.4294 (4) 0.4689 (30) 0.3473 (4) 0.3613 (5) 0.2604 (4) 0.3695 (4) 0.4685 (4) 0.4685 (4) 0.4685 (4) 0.4685 (4) 0.4685 (4) 0.4685 (4) 0.4685 (4) 0.4685 (4) 0.4605 (4) 0.4605 (4) 0.5556 (4)	U (Å ²) 0.038 (2) 0.037 (2) 0.037 (2) 0.037 (2) 0.046 (2) 0.056 (3) 0.055 0.058 (3) 0.053 (3) 0.053 (3) 0.053 0.087 (3) 0.041 (2) 0.044 (2) 0.044 (2) 0.043 (3) 0.053 (3) 0.047 (2) 0.046 (2) 0.043 (3) 0.055 (3) 0.072 (3) 0.072 (3) 0.073 (3) 0.073 (3) 0.055 (3) 0.073 (3) 0.055 (3) 0.054 (3) 0.054 (3) 0.054 (3) 0.054 (3) 0.058 (3) 0.054 (3) 0.054 (3) 0.054 (3) 0.058 (3) 0.054 (3) 0.055 (3) 0.054 (3) 0.055 (3) 0.054 (3) 0.054 (3) 0.054 (3) 0.055 (3) 0.054 (3) 0.054 (3) 0.054 (3) 0.055 (3)
C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38) C(39) C(40) C(41) C(41)	0.1639 (7) 0.0768 (8) -0.0222 (9) -0.0337 (9) 0.0537 (8) 0.1535 (8) 0.3682 (7) 0.4084 (8) 0.4893 (10) 0.5244 (9) 0.4882 (9) 0.4882 (9)	0.9934 (7) 1.0087 (8) 0.9883 (9) 0.9558 (9) 0.9558 (9) 0.9599 (8) 1.1494 (7) 1.2120 (9) 1.3354 (10) 1.3354 (10) 1.3296 (10)	0.3903 (4) 0.4194 (4) 0.3811 (5) 0.3198 (5) 0.2905 (4) 0.4372 (4) 0.4372 (4) 0.4961 (4) 0.5039 (5) 0.3954 (5) 0.3954 (5)	0.045 (2) 0.061 (3) 0.080 (3) 0.084 (3) 0.073 (3) 0.057 (3) 0.046 (2) 0.067 (3) 0.088 (3) 0.088 (3) 0.085 (3)
Molecule B	0.4038 (8)	1+2060 (9)	0.3873 (4)	0.063 (3)
C(1) C(2) N(1) C(3) N(2) C(4) C(5) H(5) C(6) H(6) C(7) C(8) H(6) C(7) C(8) H(8) C(9) C(10) C(11) H(11) C(12) C(14) C(13) C(14) C(15) C(17)	-0.1018 (7) -0.0262 (7) 0.0780 (5) 0.1288 (7) 0.0790 (6) -0.0422 (7) -0.1060 (8) -0.0565 (60) -0.2255 (8) -0.2256 (8) -0.2266 (8) -0.2246 (8) -0.2246 (8) -0.4207 (8) -0.1544 (7) 0.2428 (53) -0.1544 (7) -0.2407 (8) -0.3585 (9) -0.3585 (9) -0.2763 (9) -0.1673 (8)	0.8529 (7) 0.7989 (7) 0.8762 (6) 0.9965 (7) 1.0472 (6) 0.9742 (7) 1.0324 (8) 1.1125 (65) 0.9692 (8) 1.0257 (59) 0.8492 (8) 0.7053 (64) 0.7788 (8) 0.6961 (7) 1.06961 (7) 1.06964 (8) 1.0323 (57) 0.5228 (8) 0.4305 (9) 0.4168 (9) 0.4842 (9) 0.5809 (8)	0-1328 (3) 0-1167 (3) 0-0899 (3) 0-1066 (3) 0-1402 (3) 0-1472 (3) 0-1893 (4) 0-18842 (28) 0-1724 (4) 0-1936 (28) 0-1553 (4) 0-1323 (27) 0-1533 (4) 0-1323 (27) 0-1533 (4) 0-279 (3) 0-0861 (4) 0-0451 (29) 0-1439 (4) 0-0963 (4) 0-1122 (5) 0-1712 (4) 0-2191 (5) 0-2039 (4)	0.035 (2) 0.033 (2) 0.036 (2) 0.044 (2) 0.050 (3) 0.050 (3) 0.055 (2) 0.052 (2) 0.052 (2) 0.047 (2) 0.047 (2) 0.040 (2) 0.040 (2) 0.046 (3) 0.072 (3) 0.072 (3) 0.074 (3)
C(18) C(19) C(20) C(21) C(22) C(23) C(24)	0.0637 (7) 0.1599 (8) 0.2574 (9) 0.2574 (9) 0.1558 (9) 0.0574 (8) 0.0942 (7)	0.6732 (7) 0.7461 (8) 0.7250 (9) 0.6283 (10) 0.5552 (10) 0.5755 (8) 0.8280 (7)	0.1293 (3) 0.1703 (4) 0.1749 (4) 0.1378 (4) 0.0970 (4) 0.0923 (4) 0.0292 (3)	0.041 (2) 0.056 (3) 0.073 (3) 0.081 (3) 0.076 (3) 0.059 (3) 0.041 (2)

Table 1 (cont.)

x	У	Z	$U(\dot{A}^2)$
0.1889 (7)	0.8071 (7)	0.0196 (4)	0.046 (2)
0.1977 (8)	0.7617 (8)	-0.0404 (4)	0.050 (2)
0.1164 (8)	0.7372 (8)	-0.0888 (4)	0.054 (3)
0.0228 (8)	0.7585 (8)	-0.0775 (4)	0.059 (3)
0.0119 (7)	0.8040 (7)	-0.0184 (4)	0.050 (2)
0.1309 (8)	0.6910 (9)	-0.1535 (4)	0.068 (3)
0.3473 (7)	1.0662 (7)	0.1261 (4)	0.039 (2)
0.4419 (7)	1.0653 (8)	0.0954 (4)	0.054 (3)
0.5330 (9)	1.0663 (8)	0.1314 (4)	0.066 (3)
0.5290 (8)	1.0644 (8)	0.1940 (4)	0.061 (3)
0.4352 (8)	1.0642 (8)	0.2230 (4)	0.059 (3)
0-3445 (7)	1.0653 (7)	0.1876 (4)	0.050 (2)
0.2852 (7)	1.1969 (7)	0.0815 (4)	0.042 (2)
0.3078 (7)	1.2321 (8)	0.0247 (4)	0.057 (3)
0-3484 (8)	1.3506 (9)	0.0200 (4)	0.068 (3)
0.3663 (8)	1-4289 (9)	0.0719 (4)	0.063 (3)
0-3445 (8)	1.3956 (8)	0.1282 (4)	0.065 (3)
0.3036 (7)	1.2771 (8)	0.1339 (4)	0.053 (2)

Fig. 3. Bond lengths (Å) for molecules A (upper) and B (lower) with average e.s.d. 0.015 Å.

As the final dimensions of molecules A and B are generally identical, most discrepancies being covered by the e.s.d.'s, and as the most significant variation is a greater degree of twisting (~10°) along bond N(1)-C(3) in A compared with B, the following discussion does not differentiate between the two molecules, any parameters being presented in the form $A_{,B;A,B;...}$

The bond lengths and angles for essentially planar R2 (see Figs. 3 and 4) are appropriate for a completely delocalized ring; however, bulky substituents attached to C(2), N(1) and C(3) have distorted R1 into a boat conformation, flattened at N(2) owing to the double bond. Even though the puckering of R1 has projected

Fig. 4. Bond angles (°) for molecules A (upper) and B (lower) with average e.s.d. $1 \cdot 0^{\circ}$.

C(24) away from C(10) and C(11) and the substituents have, where possible, attained a staggered conformation, several relatively short intramolecular nonbonded distances still persist. There does not appear to be any intramolecular non-bonded π interaction except, possibly, between R4 and R6, which overlap and approach fairly closely [C(31)-C(19) 3.70(4),4.00 (5) Å], but as the rings are far from parallel $[61 (2), 56 (2)^{\circ}]$ this seems unlikely. R1 bond lengths indicate little delocalization and apart from C(1)-C(4), which is common to R2, the most significant deviation from integral bonding is N(1)-C(3) [1.39(1), 1.39(1) Å]. These bond lengths contrast with those in the planar quinazoline structure (Huiszoon, 1976), where C-N range from 1.31 to 1.37 Å and C-C are 1.40 and 1.41 Å. However, the difference is not so great where C(2) has achieved sp^2 hybridization by

double bonding externally to the quinazoline frame, *e.g.* in tricycloquinazoline (Iball & Motherwell, 1969), where the quinazoline forms part of a larger planar system, the bonds vary from those of the title molecule by less than 2σ . Incomplete delocalization is also seen in planar quinazolinone derivatives. In the case of 2-phenyl-4(3*H*)-quinazolinone (Holm, Christophersen, Ottersen, Hope & Christensen, 1977), C(2)–N(1) at 1.36 Å is the only significant difference from the title molecule [1.46 (1), 1.44 (1) Å]. However, in 2-phenyl-3-[*p*-(2.2,4-trimethylchroman-4-yl)phenyl]-4(3*H*)-

quinazolinone (Gilmore, Hardy, MacNicol & Wilson, 1977), this bond has lengthened to 1.40 Å, possibly because of the substituent on N(1), but at 1.37 Å C(4)–N(2) is significantly reduced [title compound: 1.42 (1), 1.43 (1) Å]. The shortest heavy-atom intermolecular contacts are 3.46 (4), 3.39 (4) Å between C(28) and C(5) at 1-x, 2-y, 1-z (molecule A) and -x, 2-y, -z (molecule B).

References

- BARKER, M. W. & ROSAMUND, J. D. (1974). J. Heterocycl. Chem. 11, 241–243.
- Crystal Structure Search and Retrieval (1980). Instruction Manual. Daresbury Laboratory, England.
- FLOWERS, W. T. & HALLS, A. L. (1981). Presented (by WTF) at the 8th International Heterocyclic Congress, Graz, Austria; Conference Abstracts, p. 127. To be submitted to J. Chem. Soc. Perkin Trans. 1.
- FLOWERS, W. T. & HALLS, A. L. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 1255–1256.
- GILMORE, C. J., HARDY, A. D. U., MACNICOL, D. D. & WILSON, D. R. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1427–1434.
- HOLM, A., CHRISTOPHERSEN, C., OTTERSEN, T., HOPE, M. & CHRISTENSEN, A. (1977). Acta Chem Scand. Ser. B, 31, 687-693.
- HUISZOON, C. (1976). Acta Cryst. B32, 998-1003.
- IBALL, J. & MOTHERWELL, W. D. S. (1969). Acta Cryst. B25, 882-888.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J. P. & WOOLFSON, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- SHELDRICK, G. M. (1976). SHELX. A program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1983). C39, 643-646

cis-1,4,9-Trimethylthioxanthene 10-Oxide, C₁₆H₁₆OS

BY SHIRLEY S. C. CHU AND LANGFORD BOOK

School of Engineering and Applied Science, Southern Methodist University, Dallas, Texas 75275, USA

(Received 7 September 1982; accepted 12 January 1983)

Abstract. $M_r = 256 \cdot 36$, orthorhombic, $P2_12_12_1$, $a = 1307 \cdot 1$ (6) Å³, Z = 4, $D_x = 1 \cdot 303$ Mg m⁻³, graphite-15 \cdot 296 (4), $b = 11 \cdot 662$ (3), $c = 7 \cdot 328$ (2) Å, V = monochromated Cu K α , $\lambda = 1 \cdot 5418$ Å, $\mu = 0108 \cdot 2701/83/050643 \cdot 04\01.50 © 1983 International Union of Crystallography